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Energy harvesting technology is attracting attention as “enabling technology” that expands the use and opportunities of IoT utilization, enriches
lives and enhances social resilience. This technology harvests energy that dissipates around us, in the form of electromagnetic waves, heat,
vibration, etc. and converts it into easy-to-use electric energy. This paper describes the features of these technologies, recent topics and major
challenges, and boldly predicts the future prospects of the development. © 2020 The Author(s). Published on behalf of The Japan Society of

Applied Physics by IOP Publishing Ltd

1. Introduction

In the environment around us, we can “harvest” tiny amounts of
dissipating energy and use it as available electric energy. This
technology is known as energy harvesting. It is also attracting
attention as a technology for achieving Goal 7 (“Ensure access
to affordable, reliable, sustainable and modern energy for all””)
of the Sustainable Development Goals (SDGs) and strength-
ening the resilience of our society.'™ With the increasing
sophistication of our society using IoT technology, we will
inevitably enter the Trillion Sensor Universe, where networks
consisting of one trillion sensors per year are envisioned. An
initial prediction indicates that such an era will arrive within a
few years.” In practice, it is difficult to connect each sensor to a
power source individually, and therefore batteries have been
continuously used for convenience despite their disadvantage in
terms of power cost. However, it is actually impossible to keep
replacing the batteries connected to sensors many times on the
scale of the Trillion Sensor Universe. Thus, the social im-
plementation of energy harvesting technology is becoming
indispensable for sensing the environment or our own bodies.
To the best of our knowledge, the term “harvesting” has
been used for photovoltaics in the visible light range since
around the late 1980s.” In the 2000s, various energy
harvesting technologies were reported.®” Although the term
“scavenging” was also used initially, it has recently fallen out
of use, probably because its meaning is inappropriate. Figure 1
shows the overall scheme of energy harvesting technology for
targets in the environment, such as electromagnetic waves,
heat and vibrations. Here, I have classified energy harvesting
technologies into four processes: (1) harvesting tiny amounts
of energy in the environment, (2) converting the harvested
energy into electric energy, (3) processing the energy in power
conversion circuits and (4) utilizing the power for sensing,
information processing and communication. In this article, I
refer to all of these processes as energy harvesting technology.
In the design of actual devices, each process should be
designed in the direction opposite to the arrows in the figure.
Among the energy harvesting technologies, solar cells are a
well-known technology for yielding high output and have
already been put into practice. However, energy harvesters are

required to yield stable output from not only sunlight, but
indoor light, and have been studied and developed by many
researchers.®'? In general, the illuminance of indoor light is
low and its spectrum is centered on the visible light range.
Moreover, there are many types of solar cells, such as organic
thin-film solar ce]ls,”’n) dye-sensitized solar cells'® and
perovskite solar cells.'"*'® The standardization of the method
of evaluating the energy harvesting characteristics of each type
of solar cell is essential for the promotion of research and
development and the social implementation of the
technologies.'”

Energy harvesting technology using solar cells has been
reported in many scientific papers and explained in excellent
review articles by various researchers. In this article, I focus
on three technologies for vibrational, radio waves and
thermoelectric energy harvesting. The specifications com-
monly required for energy harvesters that will be applied to
IoT devices are small in size with a high output. In addition,
environmental durability and operational reliability are re-
quired depending on their usage environment, implementa-
tion form and cost. Here, I will point out the academic and
technical issues specific to each type of technology and
introduce some recent topics. As shown in Fig. 1, I assume
that energy harvesting technology will be applied to the IoT
field, for example, the processing and communication of
sensor information, and exclude large environmental energy
harvesters as well as geothermal, wave and wind power
generation. Energy harvesting technologies for these energy
sources and the harvesting of renewable energy were
comprehensively reviewed in previous review articles,'®'”
which are recommended to the reader.

2. Vibrational energy harvesting

2.1. Features of vibrational energy harvesting

There are three methods of obtaining electric power from
vibration as a kinetic energy source: electromagnetic, elec-
trostatic and piezoelectric methods.”” The electromagnetic
method uses electromagnetic induction and inverse magne-
tostrictive effects. In the inverse magnetostrictive method, the
magnetization state of a magnetostrictive material is con-
trolled by applying a bias magnetic field using permanent
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Fig. 1. (Color online) Survey of energy harvesting technologies.
Technologies discussed in this paper are shown within the dashed line.

magnets and then a strain is applied to the material to
generate a change in magnetic flux, which is converted into
electric power using a coil.”?” The electrostatic method
includes electret-type vibrational energy harvesting using
MEMS and triboelectric energy harvesting.”” A charged
electrode of a capacitor is vibrated to change the electrostatic
capacitance and generate power. The piezoelectric effect
refers to dielectric polarization, namely, surface charges
appear, when a mechanical stress or strain is applied to a
dielectric. Piezoelectric energy harvesters collect the electric
energy generated when vibration is applied to these piezo-
electric materials.” For these vibrational energy harvesters,
design from the viewpoint of the type of vibration to be used
for energy harvesting is important in addition to the
specifications commonly required for energy harvesters.””
In general, the frequency of vibrations in the environment is
200Hz or lower. In the case of using vibration from
infrastructure such as bridges and the human body, the
frequency is only about 2-3 Hz. The acceleration of such
vibration rarely reaches 10ms 2. The frequency and accel-
eration change at random in an actual environment. As is
clear from the above-mentioned principles, the electromag-
netic, electrostatic and piezoelectric methods have character-
istic features in their output power, impedance and frequency
response, and their research and development is carried out to
use these features. For vibration in an actual environment,
design to maximize the converted power by avoiding
resonant conditions may be possible. Therefore, the features
in the design of vibrational energy harvesters are impedance
matching and maximization of energy conversion. For
example, researchers are developing a vibrational energy
harvester that efficiently harvests power from faint environ-
mental vibrations with an acceleration of ~0.1g
(1g=9.8ms ) and a frequency of 100 Hz or lower using
MEMS technology. This device generates current through
electrostatic induction when electrets on one of a pair of
opposing comb electrodes with a gap of a few micrometers
are charged and the electrodes are vibrated (Fig. 2).
Advanced MEMS technology is required because the effec-
tive area increases due to the structure of comb electrodes. In
another study, a voltage-boost rectifier was fabricated using
CMOS integrated circuits and achieved a DC output of 3.3 V.
The low threshold of the rectifier circuit enabled a roughly
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Fig. 2. (Color online) (a) Conceptual diagram of button battery type
MEMS vibrational energy harvester. (b) MEMS vibrational energy harvester
consisting of movable electrodes covered with electret. Electret is a material
that has a permanent electrical charge.

tenfold expansion of the frequency band for the energy
harvesting of MEMS vibrational energy harvesters compared
with the cases using p-n diode rectifier circuits.>”

2.2. Topics on research and development of materials
and processes

For vibrational energy harvesting by electromagnetic and
piezoelectric methods, research and development of the
energy conversion materials shown in Fig. 1 has been
intensively carried out. The typical magnetostrictive materials
used in vibrational energy harvesting by the electromagnetic
method based on inverse magnetostriction are the rare-earth—
iron alloy Terfenol-D and the Fe-Ga alloy Galfenol.”® On
the other hand, materials with a higher cost competitiveness
than those used in other vibrational energy harvesting
methods have also been developed using elements with
high abundance in the Earth’s crust. For example, a vibra-
tional energy harvester using FeCo alloys was reported.”” As
piezoelectric materials, perovskite-type composite oxides
such as Pb(Zr,Ti)O; (PZT) are known to have excellent
energy conversion characteristics. Various film deposition
methods for composite oxides have been developed to
increase their area and decrease the cost.”® To further
improve the performance of PZT, attempts to realize multi-
layered structures”” and nanostructures’’>" have been
reported. More concretely, it was experimentally demon-
strated that the polarization characteristics of PZT can be
greatly changed by coating PZT nanorods with a metal. This
suggests that the performance of ferroelectrics can be

improved by downsizing materials to the nanometer order
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and controlling the charge shielding effect rather than by
employing conventional approaches such as controlling the
material composition and strain.>? However, the use of lead
is restricted by the Restriction of Hazardous Substances
(RoHS) Directive because of its toxicity to the human body
and the environment.’ Research and development of lead-
free piezoelectric materials has also been ongoing.**~®
Moreover, piezoelectric vibrational energy harvesters with a
flexible 3D structure fabricated by a microfabrication process
are expected to cover low frequencies and achieve a large
strain, and are attracting attention for use in wearable
devices.”’”% Ionic liquids,*” fluorine-containing
polymers,40’41) parylene C*? and hydroxyapatite*” have
been intensively developed as materials for use in electro-
static electret-type energy harvesters.

2.3. Major challenges and international
standardization

As mentioned above, energy harvesters are required to have
high environmental durability and operational reliability.
However, in the case of piezoelectric energy harvesters, for
example, the material properties may change during the
manufacturing process, even if the piezoelectric effect is
caused by intrinsic physical properties such as the crystal
structure of the material. When a strain is repeatedly applied
to a material, macroscopic cracks or grain boundary segrega-
tion may occur, resulting in a reduction in the amount of
power generated.* Clarifying the mechanism behind the
deterioration of materials that occurs during the conversion of
kinetic energy into electric energy and taking countermea-
sures are challenges for vibrational energy harvesting tech-
nology.

The evaluation of material properties with high reprodu-
cibility is indispensable towards the practical application and
commercialization of any devices including energy har-
vesters. As mentioned above, there are various combinations
of methods and energy conversion materials for vibrational
energy harvesters. Hence, we need to select the combination
that provides the intended properties for applications, and
common standards should be prepared. International standar-
dization for vibrational energy harvesters is being carried out
by Technical Committee (TC) 47 of the International
Electrotechnical Commission (IEC).45’46) Standardization
not only provides the industry with a sound competitive
environment, but promotes the dissemination of achieve-
ments in research and development. In particular, when new
test methods for material properties are developed, their
techniques should be actively standardized to propagate the
use of vibrational energy harvesting technology.

3. Radio wave energy harvesting [Radio frequency
(RF) energy harvesting] 4%

Radio waves are a type of electromagnetic wave and are
defined as electromagnetic waves with a frequency of
<3 million MHz (3 THz) in the Radio Law. IEC similarly
defines a radio wave as “an electromagnetic wave propagated
in space without artificial guide and having by convention a
frequency lower than 3000 GHz”. It is clear from the fact that
we can search using our smartphones at any time, even on an
airplane or a train, that radio waves can be harvested
everywhere. In most cases, the harvested radio waves are
electromagnetic waves originally generated electrically, and
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those in a certain frequency band are selectively transmitted
for specific purposes. Therefore, radio wave energy har-
vesting includes rectification. Moreover, wireless power
supply systems that are commercially available for various
applications transmit radio waves with energy, which is
similar to radio wave energy harvesting. Radio wave energy
harvesters should efficiently perform the processing ex-
plained in Fig. 1 with a compact antenna because they
need to be small, similar to other energy harvesters, and the
electric energy of the radio waves to be harvested is
extremely small. Although the vibrational energy harvesters
introduced in the previous section require a similar circuit
design, radio wave energy harvesters require the solution of
other problems because of the high frequency of radio waves.
For example, to design a boosting circuit for energy storage,
the problem of reduced efficiency of power conversion, or
power loss, in circuits must be solved. Towards the 5 G era,
energy harvesting from high-frequency bands is advanta-
geous for reducing the size of antennas, but the circuit design
must be optimized to satisfy the conflicting demands for each
application.

Rectennas are antennas integrated with rectifier circuits
and can convert harvested radio waves into DC power. A
wide range of research and development of rectennas for
radio wave energy harvesting has been conducted from
device technology to rectenna evaluation.’*~? For example,
a high-sensitivity backward diode consisting of III-V semi-
conductor nanowires was developed as a rectifier that
replaces the preceding GaAs Schottky barrier diodes and is
expected to efficiently convert even sub-yW-class weak radio
wave energies into electric power (Fig. 3).>* In addition,
the rectification characteristics of diodes consisting of silicon-
on-insulator (SOI) FETs with steep current characteristics,
called p-n junction body-tie SOI-FETs, have been markedly
improved, and they are expected to be applied to radio wave
energy harvesting.” " Moreover, flexible diodes made of
molybdenum(IV) sulfide (MoS,), a 2D semiconductor, were
developed and proved to be promising for rectennas in the
2.4 GHz frequency band.”® There is still much room for new
materials and structures to bring about breakthroughs in

Fig. 3. (Color online) (a) Conceptual diagram of microwave power
harvesting. (b) Newly developed antenna and rectifier consisting of a
backward diode.

© 2020 The Author(s). Published on behalf of
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terms of not only the development of diodes, but the
advancement of small high-efficiency antennas. Future re-
search and development is expected to lead to major break-
throughs in radio wave energy harvesting.

4. Thermoelectric energy harvesting

4.1. Features of thermoelectric energy harvesting
Various surveys have shown that we waste at least 70% of
our primary energy, which dissipates as waste heat.’” A
survey reported that the temperature of the dissipating heat is
mostly below 100 °C. The minute energy of such heat can be
harvested and converted into electric energy by thermo-
electric energy harvesting, which is attracting attention as a
technology for providing an independent power supply for
various IoT devices."®" When a temperature difference AT is
given to the two ends of a conductor, a voltage AV proportional
to AT is generated. This effect is called the Seebeck effect, and
the proportionality coefficient S (=AV/AT) is called the
Seebeck coefficient. Thermoelectric materials are frequently
evaluated by the dimensionless figure of merit ZT = (S%o/k)T,
where o is the electrical conductivity and x is the thermal
conductivity. Here, S% in the numerator is called the power
factor (PF) and indicates how much power W can be obtained
with a temperature difference of 1°C per unit length.®” The
thermoelectric conversion efficiency increases with ZT, and it is
required to exceed 1 for practical purposes. As shown in Fig. 1,
the properties of energy conversion materials should in general
be metallic in order to decrease the contact resistance of the
electrodes, and furthermore in the case of thermoelectrics to be
favorable for ZT and lower the resistance of power generation
from harvested heat. However, ordinary metals cannot achieve
a high thermoelectric conversion efficiency in general because
the number of free electrons does not greatly change with the
temperature and the Wiedemann—Franz law, stating that o is
proportional to «, holds. Moreover, S, ¢ and k in the equation
for ZT are functions of carrier concentration and are difficult to
control independently. Thus, various breakthroughs are needed
to improve the thermoelectric properties of materials.

4.2. Topics on development of materials®®

As a means of solving a bottleneck that prevents the increase
in ZT, the selective enhancement of phonon scattering by
microstructures has been attempted.®*®” This involves
reducing only xp, on the basis of the assumption that the
thermal conductivity k is the sum of the contributions of
electrons and phonons to «, that is, k. and «,,, respectively.
This attempt is also known as a material design guideline
called “phonon glass electron crystal”.®®*%” In addition,
researchers have attempted to improve the effective thermo-
electric properties of materials by controlling their specific
crystal structures’™’" and utilizing microfabrication tech-
nology, which means the use of nanostructures in a broad
sense.’ >’ Moreover, the introduction of magnetic ions is
one of the most promising methods.”*’> For example, the
increase in the effective mass of carriers has been attempted
through the formation of polarons by spin—orbit interaction.
The use of 2D materials’*” and band engineering®'*** have
also been studied intensively with the aim of enhancing the
PF. Recently, significant progress has been made in im-
proving ZT by band engineering. A report showed that the
ZT determined from the thermal properties of thin-film
Heusler alloys based on Fe,V gWq,Al, which was measured
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by multiple laboratories while confirming reproducibility, has
reached 5 in the range of 350-400 K.*> This was observed in
a thin-film material with a metastable crystal structure in its
bulk state. It is highly expected that completely new thermo-
electric materials can be developed by controlling the crystal
phase in thermal non-equilibrium conditions.®"

Flexible organic materials are attracting attention as
thermoelectric materials for wearable applications.®~*")
Even if the thermoelectric figure of merit of organic materials
is inferior to that of inorganic materials, organic materials can
be practically used by increasing their area to obtain the
power needed. Carbon nanotube thin films have been studied
and developed as thermoelectric materials because stable n-
type doping can be achieved. High PFs of carbon nanotube
thin films at RT have been reported.®*? Silicon and its
compounds are drawing attention as thermoelectric materials
developed from human- and environmentally friendly
elements.”’ ™ A p-type SiGe layer deposited on a flexible
substrate in a low-temperature process has achieved a high
PF of 280 uW m ' K~ 2.°¥ Conductive oxides have not been
focused on as thermoelectric materials because of their low
carrier mobility and high thermal conductivity. In 1997,
however, excellent thermoelectric properties were discovered
in the layered cobalt oxide Na2C00495) and then in
(Ca,C00;5),C00,,°? SITiO;, and so forth.””® As a result,
conductive oxides have attracted much attention as materials
for energy harvesters, which are required to have low
environmental impact and high environmental durability. Not
only the crystal structure, but the electron and phonon
properties of oxides can be easily controlled by element
substitution. Recent trends of research on conductive oxides
include (1) the improvement of the Seebeck coefficient by the
control of orbital degeneracy, (2) the suppression of the
phonon contribution to thermal conductivity using the fluctua-
tion of the orbital degree of freedom and (3) the suppression of
thermal conductivity with the use of interfaces (Fig. 4).°>'”

There have been various advances in techniques for
generating, detecting and controlling spin current in the field
of spintronics. A new research field that emerged from this
field is spin caloritronics, which studies the control of spin
current with heat. This was triggered by the discovery of the
spin Seebeck effect in 2008, in which spin current is
generated by a temperature difference.'”" Subsequently, an
electromotive force (spin voltage) was observed in a mag-
netic insulator, contributing to significant academic
progress.'®? Moreover, research on spin caloritronics has
been carried out for the development of flexible applications
and the further improvement of their performance.'®'%® In
the Seebeck effect, an electromotive force is generated in the
same direction as the temperature difference. In contrast,
the temperature difference, magnetization and the electro-
motive force (Nernst voltage) are all perpendicular to each
other in the Nernst effect. When the Nernst effect is used, it
should be possible to obtain effectively large power by
forming a module itself into a sheet. The Nernst effect in
magnetic materials is called the anomalous Nernst effect,
which has been observed in various materials.'®~''* For
example, the giant anomalous Nernst effect observed in
Co,MnGa is related to the topology of the electronic structure
called the Weyl point and has been explained as a quantum

critical phenomenon.m) Graphene, a 2D material, is well
© 2020 The Author(s). Published on behalf of
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Fig. 4. (Color online) Schematic of p-type module for organic thermo-
electric energy harvesting. PEDOT:PSS and TTF-TCNQ are used as the
p-type and n-type thermoelectric materials, respectively, and these are
alternately connected in series to form the p-type module. Voltage exceeding
250 mV is generated by providing a temperature difference between the
upper and lower surfaces. N. Satoh, M. Otsuka, T. Ohki, A. Ohi, Y. Sakurai,
Y. Yamashita and T. Mori: “Organic p-type thermoelectric module supported
by photolithographic mold: a working hypothesis of sticky thermoelectric
materials”, Science and Technology of Advanced Materials, 19:1, 517-525,
(2018), DOLI: 10.1080/14686996.2018.1487239 Ref. 100.

known as a typical material that has a Dirac cone in the
energy-band structure and exhibits topological properties.
Considering the fact that two-dimensionalization contributes
to improving the thermoelectric properties of ordinary
thermoelectric materials, topology is expected to play a
major role in the design of spin caloritronics materials. In
practice, an anomalous Nernst effect due to the topology of
the electronic structure was observed in the antiferromagnetic
manganese alloy Mn;Sn, enabling the harvesting of energy
using spin current at RT in zero magnetic field.''®

4.3. Major challenges and thermophysical metrology
Although various thermoelectric materials have been re-
ported, a considerable number of them show a sharp decrease
in the figure of merit near RT. This is why Bi,Te; with good
thermoelectric properties near RT is almost the only choice of
material for the practical IoT applications targeted in this
article. Furthermore, it becomes difficult to stably obtain a
sufficiently large temperature difference near RT. Hence, the
improvement of the harvesting technology explained in Fig. 1
is required. However, the degradation of thermoelectric
materials and electrode interfaces is alleviated at low
temperatures, which is advantageous from the viewpoint of
reliability. Thermoelectric materials are assumed to be used at
relatively high temperatures and their degradation mechanism
has been investigated from the viewpoint of ionic
conductivity.''>'"® The clarification of the degradation
mechanism of thermoelectric materials assuming their use
for IoT applications will be future work. In the search for new
materials that will be important in the future, some cases of
using materials informatics for the search have been reported.
Indeed, structures that can reduce thermal conductivity, and
new material systems have been discovered by machine
learning, indicating that materials informatics will be a
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powerful tool for searching for materials.''’~'*” Research
activities to obtain directions for material development from
various data on thermoelectric properties will become in-
creasingly popular.'?" Completely new research fields have
emerged in phonon engineering.'*>"'?* Researchers have
realized the control of thermal conduction in phononic
crystals with a periodic nanostructure as well as thermal
collection using a lens structure with a radial array of
holes.'>™"?® A technique for selectively generating heat at
the nanometer scale using plasmons has also been
developed.'*” Techniques related to the control of the heat
current will have a large ripple effect and are expected to
achieve further advances in the future.

When the heat current of thin-film thermoelectric materials
is controlled using miniaturized structures, an accurate
measurement of the thermophysical properties in the minia-
turized structures is a major difficulty. For example, in a
previous study, the temperature of a sample was measured
with a nanometer spatial resolution by electron energy-loss
spectroscopy in a transmission electron microscope on the
basis of the dependence of the plasmon peak shift on the
temperature of the sample."*” However, the accurate mea-
surement is impossible unless the plasmon peaks are suffi-
ciently sharp. To solve this problem, microscopy techniques
have been applied'*" and methods based on scanning probe
microscopy have been developed.'*? A technique for calcu-
lating the temperature change and thermal effusivity at the tip
of a probe and simultaneously mapping the Seebeck coeffi-
cient and thermal conductivity from spatial information on
the potential difference has also been reported and is
expected to be indispensable for evaluating the reliability of
thermoelectric energy harvesters.'*>'** A thermoreflectance
method has become a popular means of evaluating the
thermal diffusivity and thermal conductivity of thin
films."*>'*® One side of a thin film is instantaneously heated
by pulsed light to detect the temperature response at a
position a certain distance from the film. This temperature
response is measured as the temperature dependence of the
reflected intensity of the probe light, and its time dependence
is analyzed to determine the thermal diffusivity and thermal
permeability. The analysis of the experimental data obtained
from reference samples enables the calculation of the thermal
resistance induced at the interface between the position of the
incident light and the measurement position of the reflected
intensity. Furthermore, the interface of a thin film on the side
of the substrate can be directly heated when long-wavelength
light that penetrates through the substrate is used. Therefore,
the thermal properties of the thin film in the thickness
direction can be clarified by applying the thermoreflectance
method to the surface of the thin film.*> To increase the use
of thermoelectric energy harvesting technology in society, it
is necessary to establish techniques for evaluating the proper-
ties of materials with a sufficiently high accuracy as well as
evaluation protocols to ensure their reproducibility. For
example, the measurement of the Seebeck coefficient requires
the measurement of the electromotive force, but the internal
resistance of voltmeters is not infinite. Moreover, a measure-
ment sample is always connected to an electrode, and the
reference value of the electrode must be considered, that is,
the Seebeck coefficient cannot be defined with the values of

the sample alone. Namely, the absolute value of the Seebeck
© 2020 The Author(s). Published on behalf of
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Fig. 5.

(Color online) Example of a piezoelectric vibrational energy harvester. We have succeeded in realizing a gait position sensor by utilizing machine

learning. In addition, by using it with vibration power generation, the wireless and infrastructure-built-in-type sensor system becomes possible. It is expected
that the utilization of transportation infrastructure can be analyzed from the gait signal.

Fig. 6. (Color online) Possible future of energy harvesting technology. Al
implemented in a robot with a motor function perceptually learns the
movement of the arm as visual information by using the vibrational energy
harvester and LED installed on the robot. Al acquires the physical knowledge
and sensation.

coefficient includes uncertainty if the electromotive force is
measured just as it is.'*”7'*? The result of a round-robin test
showed that the uncertainty of the figure of merit ZT was as
large as ~20%.'*” Recently, a research group has super-
imposed AC on DC and developed a measurement method to
obtain the Seebeck coefficient from the Thomson coefficient,
which is determined from a sample alone.'*" In the future,
the development of reference samples that exhibit stable
properties in a desired temperature range is expected,'** and
the establishment of international standards for the evaluation
protocols for materials and modules is desired.

5. Conclusion

Focusing on vibrational, radio wave and thermoelectric
energy harvesting, I described their technical features, recent
topics and future challenges. In particular, for vibrational and
thermoelectric energy harvesters, it is necessary to develop
environmentally friendly and highly reliable materials, and
standardize the techniques for evaluating their properties. I
hope that early adopters will appear in unexpected fields in
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the near future if sufficiently mature energy harvesting
technology stimulates academic research and development
activities, and provides commercial value to meet user
demands. As the trend of low power consumption further
continues in IoT-related technology, energy management
techniques and evaluation kits will be developed for the
connection of energy harvesters to this technology.'*'*®
Energy harvesting technology is expected to play a leading
role as a technical enabler in the advancement of smart cities
and societies, and in various fields such as advanced
medicine.'*>'4®

As a final remark, I will predict the future of energy
harvesting technology. As shown in Fig. 1, the energy
harvested from electromagnetic waves, heat and vibrations
is used for sensing the environment and processing the
information for communication. Such ambient energy is
“information” itself of the environment. Therefore, energy
harvesters’ signals can be analyzed to find latent regularities
in the environment by machine learning, and these regula-
rities can be used as data for predicting the future of the
environment.'*” Figure 5 shows a gait position sensor that
uses machine learning for the analysis of signals obtained
from a vibrational energy harvester. This sensor is expected
to be used as a technology for predicting the usage status of
transportation infrastructure by the analysis of the obtained
data. Vibrational energy harvesters can convert the move-
ment of the human body into electric energy and enable
visualization of such a movement using light-emitting diodes.
In practice, this technology has promoted the integration of
art and science through entertainment.'*® As an extension of
such technical development, there may be a future where
artificial intelligence (AI) acquires physical knowledge and
sensation by perceptually learning tactile information, as
shown in Fig. 6."*>"°” The AI implemented in a robot can
obtain visual information as an image that contains kinetic
information converted into light intensity. In addition, the Al
learns as visual information of the motion commanded by the
Al itself does not necessarily produce the result intended by
control signals because vibrational energy harvesters are
independent power supplies. I have described the future
prospects of the applications of energy harvesting technology

© 2020 The Author(s). Published on behalf of
The Japan Society of Applied Physics by IOP Publishing Ltd
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assuming that the visual sense plays an important role in
acquiring neonatal somatic sensation. I hope that this article
inspires the reader to ponder whether such applications will
be possible in the future.
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